Portal:Mathematics
The Mathematics Portal
Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.
Selected article
Johannes Kepler Image credit: User:ArtMechanic |
Johannes Kepler (1571 – 1630) was an Austrian Lutheran mathematician, astronomer and a key figure in the 17th century astronomical revolution. He is best known for his laws of planetary motion, based on his works Astronomia nova and Harmonice Mundi; Kepler's laws provided one of the foundations of Isaac Newton's theory of universal gravitation. Before Kepler, planets' paths were computed by combinations of the circular motions of the celestial orbs; after Kepler astronomers shifted their attention from orbs to orbits—paths that could be represented mathematically as an ellipse.
During his career Kepler was a mathematics teacher at a Graz seminary school (later the University of Graz, Austria), an assistant to Tycho Brahe, court mathematician to Emperor Rudolf II, mathematics teacher in Linz, Austria, and adviser to General Wallenstein. He also did fundamental work in the field of optics and helped to legitimize the telescopic discoveries of his contemporary Galileo Galilei.
Kepler lived in an era when there was no clear distinction between astronomy and astrology, while there was a strong division between astronomy (a branch of mathematics within the liberal arts) and physics (a branch of the more prestigious discipline of philosophy).
View all selected articles | Read More... |
Selected image
A Lorenz curve shows the distribution of income in a population by plotting the percentage y of total income that is earned by the bottom x percent of households (or individuals). Developed by economist Max O. Lorenz in 1905 to describe income inequality, the curve is typically plotted with a diagonal line (reflecting a hypothetical "equal" distribution of incomes) for comparison. This leads naturally to a derived quantity called the Gini coefficient, first published in 1912 by Corrado Gini, which is the ratio of the area between the diagonal line and the curve (area A in this graph) to the area under the diagonal line (the sum of A and B); higher Gini coefficients reflect more income inequality. Lorenz's curve is a special kind of cumulative distribution function used to characterize quantities that follow a Pareto distribution, a type of power law. More specifically, it can be used to illustrate the Pareto principle, a rule of thumb stating that roughly 80% of the identified "effects" in a given phenomenon under study will come from 20% of the "causes" (in the first decade of the 20th century Vilfredo Pareto showed that 80% of the land in Italy was owned by 20% of the population). As this so-called "80–20 rule" implies a specific level of inequality (i.e., a specific power law), more or less extreme cases are possible. For example, in the United States in the first half of the 2010s, 95% of the financial wealth was held by the top 20% of wealthiest households (in 2010), the top 1% of individuals held approximately 40% of the wealth (2012), and the top 1% of income earners received approximately 20% of the pre-tax income (2013). Observations such as these have brought income and wealth inequality into popular consciousness and have given rise to various slogans about "the 1%" versus "the 99%".
Did you know…
- ... that the Hadwiger conjecture implies that the external surface of any three-dimensional convex body can be illuminated by only eight light sources, but the best proven bound is that 16 lights are sufficient?
- ... that no matter how biased a coin one uses, flipping a coin to determine whether each edge is present or absent in a countably infinite graph will always produce the same graph, the Rado graph?
- ...that it is possible to stack identical dominoes off the edge of a table to create an arbitrarily large overhang?
- ...that in Floyd's algorithm for cycle detection, the tortoise and hare move at very different speeds, but always finish at the same spot?
- ...that in graph theory, a pseudoforest can contain trees and pseudotrees, but cannot contain any butterflies, diamonds, handcuffs, or bicycles?
- ...that it is not possible to configure two mutually inscribed quadrilaterals in the Euclidean plane, but the Möbius–Kantor graph describes a solution in the complex projective plane?
WikiProjects
The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.
Project pages
Essays
Subprojects
Related projects
Things you can do
Subcategories
Algebra | Arithmetic | Analysis | Complex analysis | Applied mathematics | Calculus | Category theory | Chaos theory | Combinatorics | Dynamic systems | Fractals | Game theory | Geometry | Algebraic geometry | Graph theory | Group theory | Linear algebra | Mathematical logic | Model theory | Multi-dimensional geometry | Number theory | Numerical analysis | Optimization | Order theory | Probability and statistics | Set theory | Statistics | Topology | Algebraic topology | Trigonometry | Linear programming
Mathematics (books) | History of mathematics | Mathematicians | Awards | Education | Literature | Notation | Organizations | Theorems | Proofs | Unsolved problems
Topics in mathematics
General | Foundations | Number theory | Discrete mathematics |
---|---|---|---|
| |||
Algebra | Analysis | Geometry and topology | Applied mathematics |
Index of mathematics articles
ARTICLE INDEX: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9) |
MATHEMATICIANS: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |
Related portals
Algebra | Analysis | Category theory |
Computer science |
Cryptography | Discrete mathematics |
Logic | Mathematics | Number theory |
Physics | Science | Set theory | Statistics |
In other Wikimedia projects